
AN OPEN-SOURCE DESIGN AND VALIDATION PLATFORM
FOR RECONFIGURABLE SYSTEMS

Alessandra Bonetto, Andrea Cazzaniga, Gianluca Durelli,

Christian Pilato, Donatella Sciuto, Marco D. Santambrogio

Politecnico di Milano – Dipartimento di Elettronica ed Informazione – Milano (Italy)
{bonetto, acazzaniga, pilato, sciuto, santambr}@elet.polimi.it, gianluca.durelli@mail.polimi.it

ABSTRACT

Reconfigurable computing is a hot topic for research, as
the possibilities and the technology offered by the recon-
figurable devices improve year after year both in terms of
available configurable logic resources and the possibilities
offered to exploit them. This has led CAD tools to grow both
in complexity and effectiveness. The expertise required to
develop and test a complete system-on-chip using vendors
tools has subsequently increased, forcing some designers
to create their own tools as support to official development
flows. Within this field quite few works have been devel-
oped, with respect to the huge effort that has been spent in
the exploitation of architectural designs.

ReBit is an open-source tool able to help the designer in
exploring different placement solutions in the architecture
refinement process and in testing the correct execution of an
application on a real device.

1. CONTEXT DEFINITION

To manage the design process of nowadays FPGA-based
systems, CAD tools have grown both in complexity and
effectiveness. The expertise required to develop and test
a complete system-on-chip using vendors tools has subse-
quently increased, forcing some designers to create their on
tools as support to official development flows.

ReBit is not intended to replace Xilinx tools during de-
sign and development processes, but to help the user through
the validation phase. In particular, Xilinx has released a new
version of PlanAhead [1] and ReBit is designed instead on
top of it. It aims at increasing the amount of information
given to a user as feedback on his work. This work thus
addresses the need of a debugging framework for PR archi-
tectures, in order to ease the developers’ task and give an
opportunity for testing real-time issues in a graphical way.

Besides the tools included in the ISE tool suite, other
tools have been designed to support the partial reconfigura-
tion flow. An example of such tool is Jbits [2], a Java API
which gives an insight into the bitstream configuration files
for the Virtex family of devices.

Steiner et al. [3] propose an an open-source tool able to
read and manipulate both generic and physical netlists, but it
does not focus on validation aspects such as testing whether
a UCF file is feasible or allowing the user to evaluate the
performance of his/her own scheduling and floorplacing so-
lutions. With the same target, Lavin et al. [4] implemented
Rapidsmith, a set of tools and APIs that enable CAD tool
creation for Xilinx FPGAs, focusing more on the creation
of placers and routers. At the mapped netlist level, Betz
and Rose proposed VPR [5], considered the de facto place-
and-route tool for research, also used for modeling in the
development of Altera architectures.

Finally, the previous version of ReBit [6] was mainly
focused on validation aspects involved in partial reconfigu-
ration while this new release has been updated removing the
BUSMACRO communication infrastructure and it has been
extended with two main components: the floorplacer and
the scheduler. In such a scenario the main objective of this
work is to design an open-source framework able to assist
and to guide the designer in implementing a partial dynamic
reconfigurable system from its specification to the validation
of the runtime support.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the description of the proposed open-source
design and validation framework. Examples on how to use
and how to benefit from ReBIT are presented in Section 3,
while case studies are introduced in Section 4 and some final
remarks are given in the conclusion.

2. THE PROPOSED FRAMEWORK

ReBit is an open-source tool1 designed to ease the verifica-
tion process of hardware systems, focused on reconfigurable
architectures. The main goal of ReBit is thus to design a
framework that is complementary to Xilinx’s tools, able to
ease the system designers efforts to check their configuration
files after the output of the chosen flow and debug possible
errors before the actual configuration or reconfiguration of
the FPGA takes place.

1Source code available at http://code.google.com/p/rebit/



PlanAhead [7] gives an automated way to check the con-
figuration files for possible undesired behaviors and design
errors. ReBit can be thus used either to perform graphical
verification of systems generated, for example, with PlanA-
head, or to generate support architectures to speed up the
verification of manually partitioned applications.

The tool was entirely developed in C++ and wxWidgets,
to ensure portability on different platforms. The graphical
interface is organized in panels, aggregating separate func-
tionalities. The available panels are:

• Project description: this is the first panel visualized
as the tool starts. In this panel it is possible to provide
all the input files needed in the other panels.

• Area Constraints: if at least two partial bitstreams
have been added in the project, it is possible to check
if any combination of them generates an area conflict.

• Relocation: if a partial bitstream has been added in
the project, it is possible to compute and visualize all
the possible placements to relocate that functionality.

• UCF validation: checks an UCF file for common er-
rors in the area constraints.

• UCF visualization: graphical visualization of UCF
areas constraints, with the possibility to modify area
placements on the fly.

• Scheduling: schedules an partitioned application task
graph using a specific algorithm.

• Floorplacing: floor places a scheduled application to
generate a compliant UCF.

Given the data and an architecture description it is possible
to automatically check the constraints defined in the Partial
Dynamic Reconfiguration Flows and thus relieve the system
developer from doing so manually. In addition, the frame-
work has the knowledge of the particular FPGA architec-
ture by means of its RPM grid (RPM stands for Relatively
Placed Macro). In addition to the graphical interface, ReBit
provides a set of scripts to generate a predefined architec-
ture to be use in an application testing phase. They include
ISE/EDK [8] bash scripts and PlanAhead TCL scripts. The
user has to run another script, that executes in the correct or-
der all the necessary steps. At first, a base EDK architecture
is generated, then XST generates the modules netlists, which
are mapped by PlanAhead scripts into the previously gener-
ated architecture. Finally, the partial and total bitstreams are
generated. HDL implementations of the task cores, along
with a compliant UCF file, are needed in this process.

Outputs include updated UCF files, due to the manual
UCF modification or the automatic floor placing and up-
dated XML files, modified to include scheduling informa-
tion. Several hints are provided to the user during the tool
usage on the integrated console.

One of the main contribution of ReBit is the model-
ing of several common components into data structures, im-
plemented as C++ classes. Those classes provide not only
structures to store relevant data, but also public APIs to act
on those components. Thanks to these APIs, it is possible
to easily add new features and algorithms to ReBit and to
customize the tool to best fit specific needs.

3. APPLICATIVE SCENARIOS

ReBit includes several features to help the user in validating
custom architectures. We identified different tool usages:

• validation of a manual generated system: an user
manually produced some bitstreams and/or UCF files
to be checked for possible errors.

• validation of an application: an user implemented
an hardware application and he/she wants to verify
whether the code execution is correct on a real de-
vice, not only in simulation, without having to deal
with placement details.

• custom scheduling and floor placing algorithms ver-
ification: an user wants to implement a custom schedul-
ing or floor placing algorithm and he/she wants to
have its work eased by the presence of several API and
data structures to deal with the most common tasks,
e.g. read an XML file or update an UCF file.

The first two usages are intended for common users who
want to use ReBit as it is, exploiting its validation features.
The latter usage, on the contrary, allows to customize ReBit
by means of public APIs and it is intended for those users
that want to extend it with new features.

3.1. Validation of a manual generated architecture

Nowadays, a designer that wants to generate an hardware
implementation of an application has the availability of many
proprietary tools to perform all the steps required. Neverthe-
less, the steps necessary to generate a complete architecture
are very time consuming, and each modification may require
to perform the entire process all over again. After the archi-
tecture generation, a designer may want to investigate dif-
ferent placement solutions of the generated hardware cores,
to try to improve his/her system performance or resource us-
age. Some area constraints may not be valid and wait until
the end of the architecture generation to discover the mis-
take it is a useless waste of time. ReBit wants to provide
a visual interface to perform a preliminary analysis of dif-
ferent solutions and to help less expert users to discover un-
feasible placements through a graphical visualization of the
proposed constraints. Once a feasible solution is found, the
designer can implement its solution to check whether it is



not only feasible, but also more performing. It is possible to
discover area conflicts between partial bitstreams or validate
their feasible alternative placements, check the UCF con-
straints for common errors and modify the area constraints
through a graphical interface.

3.2. Application validation

Partitioning is a key aspect when dealing with the design
of applications for embedded systems. An efficient parti-
tioning is necessary to exploit the parallelism between the
different tasks also when using reconfigurability. During the
partitioning phase, simulation is the best option to verify the
correctness of the work in progress. After that, it is neces-
sary anyway to test the behavior of the partitioned applica-
tion on a real device. To perform this step, it is necessary
to generate all the partial bitstreams related to the different
tasks, a test architecture, a scheduler able to reconfigure the
regions with the new tasks as needed and a compliant UCF.
After all these processes, all the generated artifacts have to
be included in a bitstream file to be uploaded on the device.

Those aspects are not related strictly to the application
partitioning but they are only related to the application ver-
ification process. This verification step can be faster per-
formed using ReBit; the process is composed by the follow-
ing few steps. The partitioned application, encoded in an
XML file, as long as the name of the target device, will be
processed by ReBit. The first step is to schedule the applica-
tion tasks using a defined algorithm, e.g., ASAP or ALAP,
to produce a scheduled task graph and the source file of a
schedule engine to be run on a Microblaze. This graph will
feed the floor plan step that will generate as output an UCF
file with the area constraints. The next step is to execute the
scripts provided separately with ReBit. Those scripts gener-
ate a standard architecture using as input a set of HDL files
representing the partitioned application tasks. The UCF file
and the scheduler source code are processed and as final out-
put a bitstream for the target device is generated. The user
has just to download the bitstream file on the device to test
its behavior. Note that the generated architecture does not
claim to be the best possible for each application, since it is
a multi-purpose generic architecture.

4. USE CASES

In Section 3 we described how ReBit can be used in different
scenarios. In this Section, we will propose some examples
of how ReBit can be used to test the correct implementation
of a hardware application and how it is possible to test the
behavior of a custom scheduling technique. The interested
reader can find a previous example of bitstream validation
in the previous version of this work [6].

Table 1. Estimated execution, reconfiguration times and
area occupations provided as inputs to the tool chain

Task Execution Time [cycles] Reconfig Time [cycles] Slices
GS 354853 220376 5120

GB i 90434 310745 3613
ED i 78234 290297 2723
TH 190754 160176 3224

4.1. Testing an application

In this test case we want to test the correctness of a hard-
ware implementation of the Canny edge detection algorithm
[9]. The application execution is composed of four main
steps: a gray scale conversion algorithm (GS), a noise reduc-
tion filter that in our case is a Gaussian blur filter (GB), an
edge detection filter using Laplace kernel (ED) and finally
a threshold phase (TH), that eventually removes pixels that
are not clearly part of the edges of the image. It is possible
to parallelize some operations. All the four steps are point
wise operators, so they could all be replicated and fed with
different parts of the input image to perform a parallel com-
putation of the result. In our test case, we have decided to
split the two filters (GB and ED) into four parallel nodes that
operate separately on each quarter image. The application is
thus partitioned into 10 different tasks, corresponding to 10
different task graph nodes. Information about each task in-
cludes the execution time, the reconfiguration time and the
number of required resources, that are shown in Table 1. A
separate HDL file is available for each node.

Since we want to test only the correct execution of the
algorithm, we will not impose constraints on the execution
time or on the number of area. We will schedule the ap-
plication task graph using an infinite resources ASAP algo-
rithm. As result, the source code of a scheduler is provided
as output, that will execute on a Microblaze processor, and
an UCF file with the area constraints.

On a Xilinx Virtex5 VLX110t FPGA, the overall design
area occupation is 39,370 slices, equals to 56.9% of the en-
tire target device. The application execution time is 523,521
clock cycles.

4.2. Integrate a new scheduling algorithm

During the application testing, we imposed no limits on the
number of areas that could be used to map the application
tasks. There are several cases in which such constraints
connote be ignored, e.g. if multiple instances of the same
application or different application have to be in execution
at the same time on the same device. In our specific case, we
may want to increase the throughput of images processed by
mapping more instances of the edge detector application on
the same board. Since the scheduling algorithm available



in ReBit (ASAP and ALAP) are not resource constrained, a
designer may want to implement a scheduling custom algo-
rithm that takes into consideration a fixed number of recon-
figurable areas. Let AREAS be the vector containing these
areas, the scheduling behavior is reported in Algorithm 1.

Algorithm 1 Reconfigurable-aware scheduling algorithm
1: while there are still tasks to be scheduled do
2: area = select(AREAS)
3: if free(area) then
4: time = ASAP (t, area)
5: else
6: reconfigure(area)
7: time = ASAP (t, area)
8: end if
9: end while

We have decided to integrate this scheduling algorithm
directly into the task graph class. To schedule a task graph
using this technique, the method is called computeRecSchedul-
ing and it takes as argument a fixed number of areas. At first,
the application task graph is filled using the addNode and
addEdge functions, using the information retrieved from the
XML file. Then, the graph nodes are cleared from previ-
ously computed scheduling times and they are set in a topo-
logical order, using the corresponding APIs. The number
of areas and the availability of each area are taken into con-
sideration. If there are still areas not configured, tasks are
scheduled using the ASAP algorithm. If this is not the case,
the scheduling time is computed as:

Tstart = max{(Tfree + Treconf ), Tdep} (1)

where Tfree is the minimum time when an area becomes
ready to be reconfigured, Treconf is the time needed to re-
configure the task and Tdep is the time when all parent nodes
have finished their execution. Nodes scheduling times are
updated consequently and it is possible to print the schedul-
ing using the printSchedule function.

Figure 1 shows the results of the execution of the edge
detector application, scheduled using the reconfigurable aware
algorithm.

5. CONCLUSION

In this paper we have proposed ReBit, an open-source plat-
form to help the user in the verification process of hardware
applications. Different possible usages have been proposed,
to explore different placements to optimize an architecture
performances, to graphically visualize the results of a floor
placement, to modify graphically an existing UCF or to test
an application behavior without having to deal with schedul-
ing management. In addition, it is possible to customize the
tool adding new algorithms or features, exploiting the exist-
ing data structures and public APIs.

GS

GB_0 GB_1 GB_2 GB_3

TH

ED_0

ED_1 ED_2 ED_3

0

354853

645110

735150

Starting Time
[clock cycles]

813384

Area 0 Area 1 Area 2 Area 3 Area 4

Fig. 1. Execution using the reconfigurable aware schedule
and five areas

Acknowledgments
This work was partially funded by the European Commis-
sion in the context of the FP7 FASTER project (#287804).

6. REFERENCES

[1] Xilinx Inc., PlanAhead User Guide, Xilinx Inc., 2012.

[2] S. Guccione, D. Levi, and P. Sundararajan, “Jbits: Java based
interface for reconfigurable computing,” in SPIE Proceedings,
vol. 3526, 1998.

[3] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and
M. French, “Torc: towards an open-source tool flow,” in Pro-
ceedings of the 19th ACM/SIGDA international symposium on
Field programmable gate arrays (FPGA ’11), 2011, pp. 41–
44.

[4] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “Rapidsmith: Do-it-yourself cad tools for
xilinx fpgas,” in Field Programmable Logic and Applications
(FPL), 2011 International Conference on, sept. 2011, pp. 349
–355.

[5] V. Betz and J. Rose, “Vpr: A new packing, placement and
routing tool for fpga research,” in Proceedings of the 7th Inter-
national Workshop on Field-Programmable Logic and Appli-
cations, ser. FPL ’97, 1997, pp. 213–222.

[6] M. Santambrogio, A. Cazzaniga, A. Bonetto, and D. Sciuto,
“Rebit: A tool to manage and analyse fpga-based reconfig-
urable systems,” in Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, may 2011, pp. 220 –227.

[7] X. Inc., “Planahead user guide,” Xilinx Inc., Tech. Rep. ug632,
December 2009.

[8] ——, “Embedded system tools reference manual, edk 12.1,”
Xilinx Inc., Tech. Rep. ug111, April 2010.

[9] J. Wu, J. Sun, and W. Liu, “Design and implementation of
video image edge detection system based on fpga,” in 3rd In-
ternational Congress on Image and Signal Processing (CISP
2010), vol. 1, oct. 2010, pp. 472 –476.


